v is a non-zero vector of dimension 3 × 1
Let the matrix \(v = \left[ {\begin{array}{*{20}{c}}
a\\
b\\
c
\end{array}} \right]\)
\({v^T} = \left[ {\begin{array}{*{20}{c}}
a&b&c
\end{array}} \right]\)
\(A = v{v^T} = \left[ {\begin{array}{*{20}{c}}
a\\
b\\
c
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
a&b&c
\end{array}} \right]\)
\(= \left[ {\begin{array}{*{20}{c}}
{{a^2}}&{ab}&{ac}\\
{ab}&{{b^2}}&{bc}\\
{ac}&{bc}&{{c^2}}
\end{array}} \right]\)
\(= abc\left| {\begin{array}{*{20}{c}}
a&b&c\\
a&b&c\\
a&b&c
\end{array}} \right| = {a^2}{b^2}{c^2}\left| {\begin{array}{*{20}{c}}
1&1&1\\
1&1&1\\
1&1&1
\end{array}} \right|\)
As third order and second order determinants are zero, the rank of the matrix is 1
Alternate approach:
From the properties of matrix
\(\rho \left( {AB} \right) \le \min \left\{ {\rho \left( A \right),\;\rho \left( B \right)} \right\}\)
Rank of matrix v = ρ(v) = 1
Rank pf matrix vT = ρ(vT) = 1
ρ(A = vvT) ≤ min (ρ(v) , ρ(vT) )
≤ min (1, 1)
Rank of A = ρ(A) = 1