Correct Answer - Option 4 : any real number other than 5.
For unique solution
Rank (A|B) = Rank (A) = No. of unknowns
For No solution
Rank (A|B) = Rank(A) < No.of unknows
For No solution
Rank (A|B) ≠ Rank (A)
Calculation:
Now the augmented matrix A|B is
\(\left[ {\begin{array}{*{20}{c}}
1&1&2&1\\
1&2&3&2\\
1&4&a&4
\end{array}} \right]\)
Performing R2 → R2 – R1and R3 → R3 – R1we get
\(\left[ {\begin{array}{*{20}{c}}
1&1&2&1\\
0&1&1&1\\
0&3&{a - 2}&3
\end{array}} \right]\)
Now, R3 → R3 – 3R2
\(\left[ {\begin{array}{*{20}{c}}
1&1&2&1\\
0&1&1&1\\
0&0&{a - 5}&0
\end{array}} \right]\)
Now for unique solution, Rank(A) = Rank (A|B)
A – 5 ≠ 0
⇒ a can take any real value except 5.