Correct Answer - Option 2 : 25/16
Concept:
Intensity of light ∝ width of the slit (W)
\(\frac{{{W_1}}}{{{W_2}}} = \frac{{{I_1}}}{{{I_2}}}\)
Intensity ∝ square of amplitude
\(\frac{{{W_1}}}{{{W_2}}} = \frac{{{I_1}}}{{{I_2}}} = \frac{{a_1^2}}{{a_2^2}}\)
\( \frac{{{I_{max}}}}{{{I_{min}}}} = \frac{{{{\left( {{a_1} + {a_2}} \right)}^2}}}{{{{\left( {{a_1} - {a_2}} \right)}^2}}} \)
Calculation:
\(\frac{{{I_1}}}{{{I_2}}} = \frac{{81}}{1}\)
\(\begin{array}{l} \frac{{{I_1}}}{{{I_2}}} = \frac{{a_1^2}}{{a_2^2}} = \frac{{81}}{1}\Rightarrow \frac{{{a_1}}}{{{a_2}}} = \frac{9}{1} \end{array}\)
\(\begin{array}{l} \frac{{{I_{max}}}}{{{I_{min}}}} = \frac{{{{\left( {{a_1} + {a_2}} \right)}^2}}}{{{{\left( {{a_1} - {a_2}} \right)}^2}}} = \frac{{{{\left( {\frac{{{a_1}}}{{{a_2}}} + 1} \right)}^2}}}{{{{\left( {\frac{{{a_1}}}{{{a_2}}} - 1} \right)}^2}}} = \frac{{{{\left( {\frac{9}{1} + 1} \right)}^2}}}{{{{\left( {\frac{9}{1} - 1} \right)}^2}}} = {\left( {\frac{10}{8}} \right)^2} = \frac{25}{16} \end{array}\)