Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
418 views
in Algebra by (78.8k points)
closed by

Consider the 5 × 5 matrix

\(A = \left[ {\begin{array}{*{20}{c}} 1&2&3&4&5\\ 5&1&2&3&4\\ 4&5&1&2&3\\ 3&4&5&1&2\\ 2&3&4&5&1 \end{array}} \right]\).

It is given that A has only one real eigenvalue. Then the real eigenvalue of A is


1. -2.5
2. 0
3. 15
4. 25

1 Answer

0 votes
by (79.1k points)
selected by
 
Best answer
Correct Answer - Option 3 : 15

\(A = \left[ {\begin{array}{*{20}{c}} 1&2&3&4&5\\ 5&1&2&3&4\\ 4&5&1&2&3\\ 3&4&5&1&2\\ 2&3&4&5&1 \end{array}} \right]\)

The Eigenvalues of a Matrix are given by:

|A – λ I| = 0

\(\left[ {\begin{array}{*{20}{c}} {1 - \lambda }\\ {\begin{array}{*{20}{c}} 5\\ {\begin{array}{*{20}{c}} 4\\ {\begin{array}{*{20}{c}} 3\\ 2 \end{array}} \end{array}} \end{array}} \end{array}\begin{array}{*{20}{c}} 2\\ {\begin{array}{*{20}{c}} {1 - \lambda }\\ {\begin{array}{*{20}{c}} 5\\ 4\\ 3 \end{array}} \end{array}} \end{array}\begin{array}{*{20}{c}} 3\\ {\begin{array}{*{20}{c}} 2\\ {\begin{array}{*{20}{c}} {1 - \lambda }\\ 5\\ 4 \end{array}} \end{array}} \end{array}\begin{array}{*{20}{c}} 4\\ {\begin{array}{*{20}{c}} 3\\ {\begin{array}{*{20}{c}} 2\\ {1 - \lambda }\\ 5 \end{array}} \end{array}} \end{array}\begin{array}{*{20}{c}} 5\\ {\begin{array}{*{20}{c}} 4\\ {\begin{array}{*{20}{c}} 3\\ 2\\ {1 - \lambda } \end{array}} \end{array}} \end{array}} \right] = 0\)

Apply Row Transformation

R1 → R1 + R2 + R3 + R4 + R5

\(\left[ {\begin{array}{*{20}{c}} {15 - \lambda }\\ {\begin{array}{*{20}{c}} 5\\ {\begin{array}{*{20}{c}} 4\\ {\begin{array}{*{20}{c}} 3\\ 2 \end{array}} \end{array}} \end{array}} \end{array}\begin{array}{*{20}{c}} {\;15 - \lambda }\\ {\begin{array}{*{20}{c}} {1 - \lambda }\\ {\begin{array}{*{20}{c}} 5\\ 4\\ 3 \end{array}} \end{array}} \end{array}\begin{array}{*{20}{c}} {\;15 - \lambda \;}\\ {\begin{array}{*{20}{c}} 2\\ {\begin{array}{*{20}{c}} {1 - \lambda }\\ 5\\ 4 \end{array}} \end{array}} \end{array}\begin{array}{*{20}{c}} {15 - \lambda \;}\\ {\begin{array}{*{20}{c}} 3\\ {\begin{array}{*{20}{c}} 2\\ {1 - \lambda }\\ 5 \end{array}} \end{array}} \end{array}\begin{array}{*{20}{c}} {15 - \lambda }\\ {\begin{array}{*{20}{c}} 4\\ {\begin{array}{*{20}{c}} 3\\ 2\\ {1 - \lambda } \end{array}} \end{array}} \end{array}} \right]\)

\(\left( {15 - \lambda } \right)\left( {\begin{array}{*{20}{c}} 1\\ {\begin{array}{*{20}{c}} 5\\ {\begin{array}{*{20}{c}} 4\\ {\begin{array}{*{20}{c}} 3\\ 2 \end{array}} \end{array}} \end{array}} \end{array}\begin{array}{*{20}{c}} 1\\ {\begin{array}{*{20}{c}} {\;1 - \lambda }\\ {\begin{array}{*{20}{c}} 5\\ 4\\ 3 \end{array}} \end{array}\;} \end{array}\begin{array}{*{20}{c}} 1\\ {\begin{array}{*{20}{c}} 2\\ {\begin{array}{*{20}{c}} {1 - \lambda }\\ 5\\ 4 \end{array}\;} \end{array}} \end{array}\begin{array}{*{20}{c}} 1\\ {\begin{array}{*{20}{c}} 3\\ {\begin{array}{*{20}{c}} {\;2}\\ {1 - \lambda }\\ 5 \end{array}} \end{array}} \end{array}\begin{array}{*{20}{c}} 1\\ {\begin{array}{*{20}{c}} 4\\ {\begin{array}{*{20}{c}} 3\\ 2\\ {\;1 - \lambda } \end{array}} \end{array}} \end{array}} \right)\)

It is given that the matrix A has only one real eigenvalue, i.e.

⇒ 15 - λ = 0

⇒ λ = 15

The other 4 eigenvalues are complex conjugates .

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...