Correct Answer - Option 3 : 15
\(A = \left[ {\begin{array}{*{20}{c}} 1&2&3&4&5\\ 5&1&2&3&4\\ 4&5&1&2&3\\ 3&4&5&1&2\\ 2&3&4&5&1 \end{array}} \right]\)
The Eigenvalues of a Matrix are given by:
|A – λ I| = 0
\(\left[ {\begin{array}{*{20}{c}} {1 - \lambda }\\ {\begin{array}{*{20}{c}} 5\\ {\begin{array}{*{20}{c}} 4\\ {\begin{array}{*{20}{c}} 3\\ 2 \end{array}} \end{array}} \end{array}} \end{array}\begin{array}{*{20}{c}} 2\\ {\begin{array}{*{20}{c}} {1 - \lambda }\\ {\begin{array}{*{20}{c}} 5\\ 4\\ 3 \end{array}} \end{array}} \end{array}\begin{array}{*{20}{c}} 3\\ {\begin{array}{*{20}{c}} 2\\ {\begin{array}{*{20}{c}} {1 - \lambda }\\ 5\\ 4 \end{array}} \end{array}} \end{array}\begin{array}{*{20}{c}} 4\\ {\begin{array}{*{20}{c}} 3\\ {\begin{array}{*{20}{c}} 2\\ {1 - \lambda }\\ 5 \end{array}} \end{array}} \end{array}\begin{array}{*{20}{c}} 5\\ {\begin{array}{*{20}{c}} 4\\ {\begin{array}{*{20}{c}} 3\\ 2\\ {1 - \lambda } \end{array}} \end{array}} \end{array}} \right] = 0\)
Apply Row Transformation
R1 → R1 + R2 + R3 + R4 + R5
\(\left[ {\begin{array}{*{20}{c}} {15 - \lambda }\\ {\begin{array}{*{20}{c}} 5\\ {\begin{array}{*{20}{c}} 4\\ {\begin{array}{*{20}{c}} 3\\ 2 \end{array}} \end{array}} \end{array}} \end{array}\begin{array}{*{20}{c}} {\;15 - \lambda }\\ {\begin{array}{*{20}{c}} {1 - \lambda }\\ {\begin{array}{*{20}{c}} 5\\ 4\\ 3 \end{array}} \end{array}} \end{array}\begin{array}{*{20}{c}} {\;15 - \lambda \;}\\ {\begin{array}{*{20}{c}} 2\\ {\begin{array}{*{20}{c}} {1 - \lambda }\\ 5\\ 4 \end{array}} \end{array}} \end{array}\begin{array}{*{20}{c}} {15 - \lambda \;}\\ {\begin{array}{*{20}{c}} 3\\ {\begin{array}{*{20}{c}} 2\\ {1 - \lambda }\\ 5 \end{array}} \end{array}} \end{array}\begin{array}{*{20}{c}} {15 - \lambda }\\ {\begin{array}{*{20}{c}} 4\\ {\begin{array}{*{20}{c}} 3\\ 2\\ {1 - \lambda } \end{array}} \end{array}} \end{array}} \right]\)
\(\left( {15 - \lambda } \right)\left( {\begin{array}{*{20}{c}} 1\\ {\begin{array}{*{20}{c}} 5\\ {\begin{array}{*{20}{c}} 4\\ {\begin{array}{*{20}{c}} 3\\ 2 \end{array}} \end{array}} \end{array}} \end{array}\begin{array}{*{20}{c}} 1\\ {\begin{array}{*{20}{c}} {\;1 - \lambda }\\ {\begin{array}{*{20}{c}} 5\\ 4\\ 3 \end{array}} \end{array}\;} \end{array}\begin{array}{*{20}{c}} 1\\ {\begin{array}{*{20}{c}} 2\\ {\begin{array}{*{20}{c}} {1 - \lambda }\\ 5\\ 4 \end{array}\;} \end{array}} \end{array}\begin{array}{*{20}{c}} 1\\ {\begin{array}{*{20}{c}} 3\\ {\begin{array}{*{20}{c}} {\;2}\\ {1 - \lambda }\\ 5 \end{array}} \end{array}} \end{array}\begin{array}{*{20}{c}} 1\\ {\begin{array}{*{20}{c}} 4\\ {\begin{array}{*{20}{c}} 3\\ 2\\ {\;1 - \lambda } \end{array}} \end{array}} \end{array}} \right)\)
It is given that the matrix A has only one real eigenvalue, i.e.
⇒ 15 - λ = 0
⇒ λ = 15
The other 4 eigenvalues are complex conjugates .