Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
431 views
in General by (152k points)
closed by
The complex envelope of the bandpass signal \(x\left( t \right) = - \sqrt 2 \left( {\frac{{\sin \left( {\frac{{\pi t}}{5}} \right)}}{{\frac{{\pi t}}{5}}}} \right)\sin \left( {\pi t - \frac{\pi }{4}} \right),\) centered about f = 1/2 Hz, is
1. \(\left( {\frac{{\sin \left( {\frac{{\pi t}}{5}} \right)}}{{\frac{{\pi t}}{5}}}} \right){e^{j\frac{\pi }{4}}}\)
2. \(\left( {\frac{{\sin \left( {\frac{{\pi t}}{5}} \right)}}{{\frac{{\pi t}}{5}}}} \right){e^{ - j\frac{\pi }{4}}}\)
3. \(\sqrt 2 \left( {\frac{{\sin \left( {\frac{{\pi t}}{5}} \right)}}{{\frac{{\pi t}}{5}}}} \right){e^{j\frac{\pi }{4}}}\)
4. \(\sqrt 2 \left( {\frac{{\sin \left( {\frac{{\pi t}}{5}} \right)}}{{\frac{{\pi t}}{5}}}} \right){e^{ - j\frac{\pi }{4}}}\)

1 Answer

0 votes
by (115k points)
selected by
 
Best answer
Correct Answer - Option 3 : \(\sqrt 2 \left( {\frac{{\sin \left( {\frac{{\pi t}}{5}} \right)}}{{\frac{{\pi t}}{5}}}} \right){e^{j\frac{\pi }{4}}}\)

Concept: The complex envelope of the bandpass signal is nothing but its low pass equivalent. Relation of Bandpass signal x(t) with its equivalent low pass signal is given by \( \;x\left( t \right) = Re\left[ {\tilde x\left( t \right){e^{j2\pi {f_c}t}}} \right]\)

Calculation: The given bandpass signal is:

\(x\left( t \right) = - \sqrt 2 \left[ {\frac{{\sin \frac{{\pi t}}{5}}}{{\frac{{\pi t}}{5}}}} \right]\sin \left( {\pi t - \frac{\pi }{4}} \right)\)     …1)

\(\& \;x\left( t \right) = Re\left[ {\tilde x\left( t \right){e^{j2\pi {f_c}t}}} \right]\)     …2)

Where fc = center frequency

And x̃ (t) is the complex envelope of x(t)

So, Let x̃(t) = a + jb. We are to find a & b.

From equation     …1)

\(x\left( t \right) = \frac{{\sin \left( {\frac{{\pi t}}{5}} \right)}}{{\frac{{\pi t}}{5}}}\left[ {\cos \pi t - \sin \pi t} \right]\)      …3)   ({On applying sin (A - B) formula}

From Equation      …2)

x(t) = Re[(a + jb)(cos πt + j sin πt)] = a cos πt – b sin πt      …4)

On equating 3) & 4) we get

\(a = b = \frac{{\sin \left( {\frac{{\pi t}}{5}} \right)}}{{\frac{{\pi t}}{5}}},\;So\;\tilde x\left( t \right) = a + jb = \frac{{\sin \left( {\frac{{\pi t}}{5}} \right)}}{{\frac{{\pi t}}{5}}}\left( {i + j} \right)\)  

\($Hence\;\tilde x\left( t \right) = \frac{{\sin \left( {\frac{{\pi t}}{5}} \right)}}{{\left( {\frac{{\pi t}}{5}} \right)}}\left( {\sqrt 2 } \right){e^{\frac{{j\pi }}{4}}}\)

Hence Option 3 is Correct.
 

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...