\({\rm{Compacted\;volume\;of\;MSW\;}}\left( {{{\rm{V}}_{\rm{c}}}} \right) = \frac{{{\rm{Amount\;of\;MSW\;going\;into\;landfill}}}}{{{\rm{Compacted\;density}}}}\)
\(\therefore {{\rm{V}}_{\rm{c}}} = \frac{{36 \times {{10}^6}{\rm{\;kg}}/{\rm{year}}}}{{550{\rm{\;kg}}/{{\rm{m}}^3}}} = 65454.54{\rm{\;}}{{\rm{m}}^3}/{\rm{year}}\)
\({\rm{Total\;landfill\;volume\;}}\left( {\rm{V}} \right) = \frac{{{\rm{Volume\;of\;MSW\;}}\left( {{{\rm{V}}_{\rm{c}}}} \right)}}{{0.8}}\)
\({\rm{V}} = \frac{{65454.54}}{{0.8}} = 81818.18{\rm{\;}}{{\rm{m}}^3}/{\rm{year}}\)
\({\rm{Area\;of\;landfill\;required\;}}\left( {\rm{A}} \right) = \frac{{{\rm{Volume\;of\;landfill\;}}\left( {\rm{V}} \right)}}{{{\rm{Height\;of\;landfill\;}}\left( {\rm{H}} \right)}}\) [∵ Height of landfill = 3 m]
\({\rm{A}} = \frac{{81818.18}}{3} = 27272.72\;{{\rm{m}}^2}\)