Correct Answer - Option 3 : 1
Assume \(y = {x^{\frac{1}{x}}},\;x \to \; \propto\)
\({\log _b}y = \frac{{{{\log }_b}x}}{x}\)
\(x \to \; \propto \frac{{{{\log }_b}x}}{x} \simeq 0\) (Denominator is of higher order than numerator)
\(\therefore {\log _b}y = 0\)
y = b° = 1