\({\rm{V}} = {{\rm{x}}^2}{\rm{\hat i}} + 2{{\rm{y}}^3}{\rm{\hat j}} + {{\rm{z}}^4}{\rm{\hat k}}\)
Divergence \(\left( \nabla V \right) = \frac{\partial }{{\partial {\rm{x}}}}\left( {{{\rm{x}}^2}} \right){\rm{}} + \frac{\partial }{{\partial {\rm{y}}}}\left( {2{{\rm{y}}^3}} \right){{}} + \frac{\partial }{{\partial {\rm{x}}}}\left( {{{\rm{z}}^4}} \right){\rm{}}\)
= 2x + 6y2 + 4z3
At x= 1, y=2 and z=3
[Divergence (V)]= 2 × 1 + 6 × 2
2 + 4 × 3
3 = 134