Correct Answer - Option 3 :
\(\frac{3}{4}m{v^2}\)
MI of the disc about its own axis, \(I = \frac{1}{2}m{r^2}\)
As \(v = r\omega \Rightarrow {\omega ^2} = \frac{{{v^2}}}{{{r^2}}}\)
\(\begin{array}{l}
Total\;kinetic\;energy = Rotational\;KE + Translational\;KE\\
Total\;kinetic\;energy = \frac{1}{2}I{\omega ^2} + \frac{1}{2}m{v^2}\\
\Rightarrow \frac{1}{2} \times \frac{1}{2}m{r^2} \times \frac{{{v^2}}}{{{r^2}}} + \frac{1}{2}m{v^2} = \frac{3}{4}m{v^2}
\end{array}\)