Concept:
A function f(x) is continuous at x = a if,
Left limit = Right limit = Function value = Real and finite
A function is said to be differentiable at x =a if,
Left derivative = Right derivative = Well defined
Analysis:
\(\begin{array}{*{20}{c}} {{\rm{lim}}}\\ {{\rm{x}} \to \frac{{\rm{\pi }}}{2}} \end{array}{\rm{\;f}}\left( {\rm{x}} \right) = {\rm{f}}\left( {\frac{{\rm{\pi }}}{2}} \right)\) for continuity
\(\begin{array}{*{20}{c}} {{\rm{lim}}}\\ {{\rm{x}} \to \frac{{\rm{\pi }}}{2}} \end{array}{\rm{\;}}\frac{{{\rm{λ }}\cos {\rm{x}}}}{{\frac{{\rm{\pi }}}{2} - {\rm{x}}}} = 1\)
To find the LHS value, we can apply the L-Hospital’s rule
\(\begin{array}{*{20}{c}} {{\rm{lt}}}\\ {{\rm{x}} \to \frac{{\rm{\pi }}}{2}} \end{array}{\rm{\;}}\frac{{ - {\rm{λ }}\sin {\rm{x}}}}{{ - 1}} = 1\)
∴ λ = 1