Concept:
The Froude number is given by,
\({F_r} = \frac{V}{{\sqrt {gD} }}\)
Where,
V = velocity of water, D = Y = depth of water
For critical flow,
Fr = 1, V = Vc, and D =Yc
\({1} = \frac{V}{{\sqrt {gD} }}\)
\({{\bf{V}}_{\bf{C}}} = \sqrt {{\bf{g}}{{\bf{Y}}_{\bf{c}}}\;} \)
The specific energy equation for the channel
\({\rm{E}} = {\rm{Y}} + \frac{{{{\rm{V}}^2}}}{{2{\rm{g}}}}\)
Specific energy at a critical depth
\({\rm{E}} = {{\rm{Y}}_{\rm{c}}} + \frac{{{{\left( {{{\rm{V}}_{\rm{c}}}} \right)}^2}}}{{2{\rm{g}}}},{\rm{\;we\;know\;that\;\;}}{{\rm{V}}_{\rm{c}}} = \sqrt {{\rm{g}}{{\rm{Y}}_{\rm{c}}}} \)
\({\rm{E}} = {{\rm{Y}}_{\rm{c}}} + \frac{{{{\left( {\sqrt {{\rm{g}}{{\rm{Y}}_{\rm{c}}}} } \right)}^2}}}{{2{\rm{g}}}} = {Y_C} + \frac{1}{2} \times {Y_c} = \frac{3}{2} \times {Y_c}\)
\(\therefore {\rm{E}} = \frac{3}{2} \times {Y_c}\)
Calculation:
Given,
B = width of channel = 3 m
Q = 6 m3/sec, y1 = 0.5 m
q = Discharge per unit width = Q/B = 6/3 = 2
\({V_1} = \frac{Q}{{B{y_1}}} = \frac{6}{{3 \times 0.5}} = 4\ m/sec\)
Hump is to be provided.
\(\begin{array}{l} {E_1} = \frac{{V_1^2}}{{2g}} + {y_1}\\ {E_1} = \frac{{{4^2}}}{{2 \times 9.81}} + 0.5 = 1.315\ m \end{array}\)
\({E_2} = \frac{3}{2}{y_2}c = \frac{3}{2}{\left( {\frac{{{q^2}}}{g}} \right)^{\frac{1}{3}}} = 1.5 \times {\left( {\frac{{{2^2}}}{{9.81}}} \right)^{\frac{1}{3}}} = 1.112\ m\)
Relation between height of hump (ΔZ ) and specific energy (E)
E1 = E2 + Δz
Δz = E1 – E2 = 1.315 – 1.112 = 0.202 m