Correct Answer - Option 3 :
\(\mathop \sum \limits_{n = 1}^\infty \frac{1}{{\left( {2n - 1} \right)^2}} = \frac{{{\pi ^2}}}{8}\)
The given fourier series is,
\(f\left( x \right) = \frac{\pi }{4} + \frac{2}{\pi }\left[ {\frac{{\cos x}}{1^2} + \frac{{\cos 3x}}{{{3^2}}} \ldots \ldots \ldots } \right] + \left[ {\frac{{\sin x}}{1} + \frac{{\sin 2x}}{2} + \frac{{\sin 3x}}{3} + \ldots \ldots \ldots } \right]\)
\(f\left( 0 \right) = \frac{\pi }{4} + \frac{2}{\pi }\left[ {\frac{{1}}{1^2} + \frac{{1}}{{{3^2}}} + \frac{{1}}{{{5^2}}} \ldots \ldots \ldots } \right]\)
The convergence of f(x) at x = 0 is valid if
\(f\left( 0 \right) = \frac{{f\left( {{0^ - }} \right) + f\left( {{0^ + }} \right)}}{2}\)
\(f\left( 0 \right) = \frac{{f\left( {{0^ - }} \right) + f\left( {{0^ + }} \right)}}{2}\)
where \(f\left( {{0^ - }} \right) = \mathop {\lim }\limits_{x \to 0\;} \left( {\pi - x} \right) = \pi\)
\(f\left( 0 \right) = \frac{\pi}{2}\)
\(\frac{\pi }{2} = \frac{\pi }{4} + \frac{2 }{\pi} \left[ {\frac{1}{{{1^2}}} + \frac{1}{{{3^2}}} + \ldots } \right]\)
\( \frac{1}{1} + \frac{1}{{{3^2}}} + \frac{1}{{{5^2}}} + \ldots =\frac{{{\pi^2}}}{8}\)
\(\mathop \sum \limits_{n = 1}^\infty \frac{1}{{{{\left( {2n - 1} \right)}^2}}} = \frac{\pi^2 }{8}\)