Correct Answer - Option 1 : (3 – 18x) e
−6x
\(\frac{d^2y}{dx^2}+12\frac{dy}{dx}+36y=0\)
Let \(\frac{d}{dx}=D\)
The auxilliary equation can be written as:
D2 + 12D + 36 = 0
(D + 6)2 = 0
D = -6 and -6
Complementary solution y = (C1 + C2x) e-6x
Given y(0) = 3 = (C1 + 0) e-0
c1 = 3
\(\frac{dy}{dx}=(C_1+C_2x)(-6e^{-6x})+e^{-6x}C_2\)
\(\frac{dy}{dx}|_{x=0}=-36=C_1(-6)+C_2\)
C2 = -36 + 18 = -18
∴ y = (C1 + C2x) e-6x
y = (3 – 18x) e−6x