\(\left[ {\begin{array}{*{20}{c}} {x\left( n \right)}\\ {x\left( {n - 1} \right)} \end{array}} \right] = {\left[ {\begin{array}{*{20}{c}} 1&1\\ 1&0 \end{array}} \right]^n}\left[ {\begin{array}{*{20}{c}} 1\\ 0 \end{array}} \right],n \ge 2\)
For n = 2:
\(\left[ {\begin{array}{*{20}{c}} {x\left( 2 \right)}\\ {x\left( 1 \right)} \end{array}} \right] = {\left[ {\begin{array}{*{20}{c}} 1&1\\ 1&0 \end{array}} \right]^2}\left[ {\begin{array}{*{20}{c}} 1\\ 0 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 2&1\\ 1&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1\\ 0 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 2\\ 1 \end{array}} \right]\)
x(2) = 2, x(1) = 1
For n = 3:
\(\left[ {\begin{array}{*{20}{c}} {x\left( 3 \right)}\\ {x\left( 2 \right)} \end{array}} \right] = {\left[ {\begin{array}{*{20}{c}} 1&1\\ 1&0 \end{array}} \right]^3}\left[ {\begin{array}{*{20}{c}} 1\\ 0 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 3&2\\ 2&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1\\ 0 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 3\\ 2 \end{array}} \right]\)
x(3) = 3, x(2) = 2
From the above values we can write the recursive relation as
x(n) = x(n – 1) + x(n – 2)
x(2) = x(1) + x(0) = 1 + 1 = 2
x(3) = x(2) + x(1) = 2 + 1 = 3
x(4) = x(3) + x(2) = 3 + 2 = 5
x(5) = x(4) + x(3) = 5 + 3 = 8
x(6) = x(5) + x(4) = 8 + 5 = 13
x(7) = x(6) + x(5) = 13 + 8 = 21
x(8) = x(7) + x(6) = 21 + 13 = 34
x(9) = x(8) + x(7) = 34 + 21 = 55
x(10) = x(9) + x(8) = 55 + 34 = 89
x(11) = 89 + 55 = 44
x(12) = 144 + 89 = 233