Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
259 views
in Calculus by (115k points)
closed by

The integral \(\frac{1}{{2\pi }}\mathop \int\!\!\!\int \limits_{D\;}^\; \left( {x + y + 10} \right)dxdy\), where D denotes the disc x2 + y2 ≤ 4, evaluates to__________.

1 Answer

0 votes
by (152k points)
selected by
 
Best answer

Given,

\(\frac{1}{{2\pi }}\mathop \int\!\!\!\int \limits_{D\;}^\; \left( {x + y + 10} \right)dxdy\)

and x2 + y2 ≤ 4

Putting x = r.cosθ, y = r.sinθ and dx.dy = r.dr.dθ

\({\rm{I}} = \frac{1}{{2{\rm{\pi }}}}\mathop \smallint \limits_{{\rm{θ }} = 0}^{2{\rm{\pi }}} \mathop \smallint \limits_{{\rm{r}} = 0}^2 \left( {{\rm{rcosθ }} + {\rm{rsinθ }} + 10} \right){\rm{rdrdθ }}\)

\(\\ = \frac{1}{{2{\rm{\pi }}}}\mathop \smallint \limits_{{\rm{θ }} = 0}^{2{\rm{\pi }}} \left( {\frac{{{{\rm{r}}^3}}}{3}{\rm{cosθ }} + \frac{{{{\rm{r}}^3}}}{3}{\rm{sinθ }} + 5{{\rm{r}}^2}} \right)_0^2{\rm{dθ }}\)

\(= \frac{1}{{2{\rm{\pi }}}}\left[ {\mathop \smallint \limits_{{\rm{θ }} = 0}^{2{\rm{\pi }}} \left( {\frac{8}{3}{\rm{cosθ }} + \frac{8}{3}{\rm{sinθ }} + 20} \right){\rm{dθ }}} \right] \)

\(= \frac{1}{{2{\rm{\pi }}}} \left[ {0 + 0 + 20\left( {2{\rm{\pi }}} \right)} \right]= 20\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...