Correct Answer - Option 2 :
\(\frac{{14}}{3}\)
Concept:
Job arrival rate follows Poisson distribution
Arrival rate (λ) = \(\frac{5}{8}\frac{{{\rm{Jobs}}}}{{{\rm{Hour}}}}\)
Service time for one job is 40 min
Therefore, Service rate (μ) \( = \frac{3}{2}\frac{{{\rm{Jobs}}}}{{{\rm{Hour}}}}\)
Utilization factor, \({\rm{\rho }} = \frac{{\rm{\lambda }}}{{\rm{\mu }}}\)
Idle time = 1 – ρ
Calculation: \({\rm{\lambda }} = \frac{5}{8}\frac{{{\rm{Jobs}}}}{{{\rm{Hour}}}},{\rm{\;\mu }} = \frac{3}{2}\frac{{{\rm{Jobs\;}}}}{{{\rm{Hour}}}}{\rm{\;\rho }} = \frac{{\rm{\lambda }}}{{\rm{\mu }}} = \frac{{\frac{5}{8}}}{{\frac{3}{2}}} = \frac{5}{{12}}\)
Idle time = 1 – ρ = 1 - \(\frac{5}{{12}} = \;\frac{7}{{12}}{\rm{\;hour}}\)
Therefore, Idle time for 8-hour shift:
\(\frac{7}{{12}} \times 8 = \frac{{14}}{3}{\rm{\;hours}}\)