Concept:
By trapezoidal rule,
\(\mathop \smallint \limits_{{x_0}}^{{x_n}} f\left( x \right)dx = \frac{h}{2}\left[ {\left( {{y_0} + {y_n}} \right) + 2\left( {{y_1} + {y_2} + \ldots } \right)} \right]{{\;\;\;\;\;}} \ldots \left( 1 \right)\)
Calculation:
Given:
h = 1 & \(y=\frac{1}{x}\)
Table for calculating y0, y1, y2, y3 ......yn
x |
1 |
2 |
3 |
y = 1/x |
1 |
\(\frac{1}{2}=0.5\) |
\(\frac{1}{3}=0.3333\) |
Designation |
y0
|
y1
|
y2
|
Using equation (1),
\(\Rightarrow \mathop \smallint \limits_1^3 \frac{1}{x}dx = \frac{1}{2}\left[ {\left( {1 + \frac{1}{3}} \right) + 2\left( {0.5} \right)} \right] = 1.167\)