Correct Answer - Option 2 : 4 only
\(y = x + \sqrt {x + \sqrt {x + \sqrt {x + \ldots \infty } } } \)
\(\Rightarrow y - x = \sqrt {x + \sqrt {x + \ldots } }\)
\(\Rightarrow y - x = \sqrt y\)
⇒ y = (y –x)2
⇒ y2 + x2 – 2xy – y = 0
at x = 2, we get,
y2 – 5y + 4 = 0 ⇒ (y - 4) (y - 1) = 0
⇒ y = 4, y = 1
But At x=2, from the given equation
\(y = x + \sqrt {x + \sqrt {x + \sqrt {x + \ldots \infty } } }\),
the value of y will be greater than 2.
So at x=2, y=1 is not possible.