Correct Answer - Option 3 : 2 N and 8 N
Concept:
Resultant force
\(F = \sqrt{F_1^2 + F_2^2 + 2 F_1 F_2 \cos θ} \)
Putting option (iii) and checking
F1 = 2N, F2 = 8 N
For maximum resultant force, cos θ = 1
Fmax = \(F = \sqrt{F_1^2 + F_2^2 + 2 F_1 F_2 } = \sqrt{(F_1 + F_2)^2} \)
Fmax = F1 + F2
Fmax = 2 + 8 = 10
For minimum resultant force, cos θ = -1
Fmax = \(F = \sqrt{F_1^2 + F_2^2 - 2 F_1 F_2 } = \sqrt{(F_1 - F_2)^2} \)
Fmax = F1 - F2
Fmax = \(\sqrt{(2 - 8)^2} \) = 6 N
Here, we can see 4 N does not comes within the range of Fmax and Fmin
Similarly,
→ if we put option (i) F1 = 2, F2 = 4
Fmax = F1 + F2 = 6 N
Fmin = \(\sqrt{F_1 - F_2)^2} \) = 2N
Resultant 4 N is coming within the Range of Fmax and Fmin
→ if we put option (ii) F1 = 2 N, F2 = 6 N
Fmax = F1 + F2 = 8 N
Fmin = \(\sqrt{F_1 - F_2)^2} \) = 4 N
Resultant 4 N is coming within the Range of Fmax and Fmin