LHS = 2(sin6x + cos6x) − 3(sin4x + cos4x) + 1
= 2[(sin2x)3 + (cos2x)3] − 3(sin4x + cos4x) + 1
= 2[(sin2x + cos2x)(sin4x − sin2x cos2x + cos4x)] − 3(sin4x + cos4x) + 1
[∵ a3 + b3 = (a + b)(a2 − ab + b2)]
= −[sin4x + cos4x + 2sin2xcos2x] + 1
= −[sin2x + cos2x] + 1
= -1 + 1
= 0
= RHS
Hence Proved.