Correct Answer - Option 2 : π
Formula used:
cos2θ = 1 - 2sin2θ
Calculation:
f(x) = ln(2 + sin2x)
⇒ f(x) = ln[2 + (1 - cos2x)/2]
⇒ f(x) = ln[(5 - cos2x)]/2 ----(i)
If we put (x + π) in place of x, we get
⇒ f(x + π) = ln[(5 - cos2(x + π)/2]
⇒ f(x + π) = ln[5 - cos(2π + 2x)]/2
⇒ f(x + π) = ln[(5 - cos2x)]/2 ----(ii)
From (i) and (ii), we get
f(x + π) = f(x)
∴ The period of the function f(x) = ln(2 + sin2x) is π.