Correct Answer - Option 2 : 25 m
Given:
The perimeter of the rectangular field is 62 m
The area of the rectangular field = 168 m2
Formula used:
The perimeter of the rectangle = 2(l + b)
The area of the rectangle = lb
The diagonal of the rectangle = √(l2 + b2)
Here, l → Length, b → Breadth
Calculation:
Perimeter of the rectangular field = 62
⇒ 2(l + b) = 62
⇒ (l + b) = 31 ---(1)
Area of the rectangular field = 168
⇒ lb = 168 ---(2)
Now, squaring eq (1)
(l + b)2 = 312
⇒ l2 + b2 + 2lb = 961
⇒ l2 + b2 + 2 × 168 = 961
⇒ l2 + b2 = 961 - 336
⇒ l2 + b2 = 625
The diagonal of the rectangular field = √(l2 + b2)
⇒ √625 = 25 ---(Neglecting -ve value)
∴ The diagonal of the rectangular field is 25 cm