Correct Answer - Option 4 : 0, -1
Concept:
The diagonals of a parallelogram bisect each other.
Let A(x1, y1, z1) and B(x2, y2, z2), then midpoint = \(\rm {(x_1\; +\; x_2)\over2},{(y_1\; + \;y_2)\over2}\)
Calculation:
Let, the co-ordinates of D = (x, y)
The midpoint of AC = \(\rm {(-2\;+\;8)\over2},{(3\;+\;3)\over2} = (3,3)\)
The midpoint of BD = \(\rm {(6\;+\;x)\over2},{(7\;+\;y)\over2} \)
As the midpoint of AC and BD is same we can write,
\(\rm {(6\;+\;x)\over2}= 3\)
∴ 6 + x = 6
∴ x = 0
Similarly, \(\rm {(7\;+\;y)\over2}= 3\)
∴ 7 + y = 6
∴ y = -1
So, D(x, y) = (0, -1)