Correct Answer - Option 2 : 0
Concept:
As we know, the formula for combinations is
\(^n{C_r} = \frac{{n!}}{{r!\left( {n - r} \right)!}}\)
Note:
\(^n{C_n}=1\)
\(^n{C_r} = {}^n{C_{n - r}}\)
Calculation:
Given,
n > 2
Let's take n = 3 and put in the series,
⇒ \(1 - {}^n{C_1} + {}^n{C_2} + - - - {( - 1)^n}{}.^n{C_n}\)
⇒ \(1 - {}^3{C_1} + {}^3{C_2} + - - - {( - 1)^3}.{}^3{C_3}\)
Now Expanding and solving, we get
\(\begin{array}{l} \Rightarrow 1 - \frac{{3!}}{{1!\left( {3 - 1} \right)!}} + \frac{{3!}}{{2!\left( {3 - 2} \right)!}} - 1\\ \Rightarrow 1 - \frac{{3!}}{{1!2!}} + \frac{{3!}}{{2!1!}} - 1 = 0 \end{array}\)
Similarly, we can check for other n values, the sum of the expansions \( - {}^n{C_1} + {}^n{C_2} + - - - {( - 1)^n}{}^n{C_n}\) will come zero for all n > 2.