Correct Answer - Option 2 :
\(\rm Sum=\dfrac{-(a+b+c)}{2},\ Product=abc\)
Given:
Three quadratic equations, x2 + ax + bc = 0, x2 + bx + ca = 0, x2 + cx + ab = 0
Concept used:
A general quadratic equation is ax2 + bx + c = 0
If α and β is the roots of the equation then,
α × β = c/a and α + β = -b/a
Calculation:
Let α and β be the roots of the equation x2 + ax + bc = 0
⇒ α + β = -a.......(1)
⇒ α β = bc........(2)
And β & z be the roots of the equation x2 + bx + ca = 0
⇒ β + z = -b.......(3)
⇒ βz = ac........(4)
And α & z be the roots of the equation x2 + cx + ab = 0
⇒ α + z = -c......(5)
⇒ α β = ab.......(6)
Adding (1),(2) & (5), we get 2α + 2β + 2z = -a - b - c
⇒ \(α + β + z = \frac{-(a + b + c)}{2} \)
⇒ Multiplying (2),(4) & (6), we get α2 β2 z2 = a2b2c2
⇒ α β z = abc
∴ \(\rm Sum=\dfrac{-(a+b+c)}{2},\ Product=abc\)