Correct Answer - Option 2 : sin
2β
Given:
tanα + cosβ = k
secβ + cotα = l
Concept used:
(1/cotθ) = tanθ
(1/cosecθ) = sinθ
1 + tan2θ = sec2θ
Calculations:
secβ + cotα = l
⇒ (1/cosβ) + (1/tanα) = l
⇒ (tanα + cosβ)/(tanα × cosβ) = l
⇒ k/(tanα × cosβ) = l
⇒ k/l = tanα × cosβ ....(1)
Square the equation no. (1)
⇒ (k/l)2 = tan2α × cos2β ....(2)
Multiply both side of equation no. (2) with cot2α
⇒ cot2α × (k/l)2 = tan2α × cos2β × cot2α
⇒ cot2α × (k/l)2 = cos2β
Now,
1 - cot2α(k/l)2 = 1 - cos2β
⇒ sin2β
∴ The correct choice will be option 2.