Correct Answer - Option 2 : 1
Concept used:
cosθ × cos(60° – θ) × cos(60° + θ) = (1/4) × cos3θ
sinθ × sin(60° – θ) × sin(60° + θ) = (1/4) × sin3θ
sinθ = cos(90° - θ)
Calculations:
(cos18° cos42° cos60° cos78°) × (sin12° sin48° sin72°)-1
⇒ (cos18° cos42° cos78°) × [(sin12° sin48° sin72°)]-1
⇒ (cos18° cos(60° – 18°) cos(60° + 18°) × [(sin12° sin(60° – 12°) sin(60° + 12°)]-1
⇒ (1/4) × (cos54°) × [(1/4) × sin36°]-1
⇒ (1/4) cos54° × [(1/4) × cos54°]-1
⇒ [(1/4) cos54°]/[(1/4) cos54°]
⇒ 1
∴ The correct answer will be option 2.