Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
198 views
in Sets, Relations and Functions by (115k points)
closed by
If 63 - 4x 4x + 5 = 8 (Given log102 = 0.301 and log103 = 0.477), then which one of the following is correct?
1. 0 < x < 1
2. 1 < x < 2
3. 2 < x < 3
4. 3 < x < 4

1 Answer

0 votes
by (114k points)
selected by
 
Best answer
Correct Answer - Option 2 : 1 < x < 2

Given:

63 - 4x 4x + 5 = 8 

Concept:

am⋅an = am + n

\(\rm {a^m\over a^n}\) = am - n

(a⋅b)n = an⋅bn

log ab = b⋅log a

Calculation:

Given: 63 - 4x 4x + 5 = 8 

⇒ 33 - 4x⋅ 23 - 4x⋅ 22x + 10 = 23                                         (∵(a⋅b)n = an⋅bn)

⇒ 33 - 4x⋅ 23 - 4x + 2x + 10 = 23                                          (∵am⋅an = am + n)

⇒ 33 - 4x⋅ 213 - 2x = 23

⇒ 33 - 4x = \(\rm {2^3\over {2^{13\ -\ 2x}}}\)

⇒ 33 - 4x = 23 - (13 - 2x)                                                     (∵\(\rm {a^m\over a^n}\) =  am - n)

⇒ 33 - 4x = 22x - 10

Taking log both side

⇒ log (33 - 4x) = log (22(x - 5))

⇒ (3 - 4x)⋅log 3 = 2(x - 5)⋅log 2                                     (∵ log ab = b⋅log a)

⇒ (3 - 4x)(0.477) = 2(x - 5)(0.301)

⇒ 1.4313 - 1.9084x = 0.602x - 3.010

⇒ 1.4313 + 3.010 = 0.602x + 1.9084x

⇒ 4.4413 = 2.5104x

⇒ x = \(\rm {4.4413\over 2.5104}\) 

⇒ x = 1.7692

∴ The value of x lies in between 1 < x < 2.

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...