Correct Answer - Option 4 : (x+1)
3
Given:
Polynomial f(x) = x6 - 3x4 + 3x2 - 1
And polynomial g(x) = x3 + 3x2 + 3x + 1
Formula Used:
(x2 - y2) = (x + 1)(x - y)
Calculation:
According to the question, we have
f(x) = x6 - 3x4 + 3x2 - 1
⇒ x6 - x4 - 2x4 + 2x2 + x2 - 1
⇒ x4(x2 - 1) - 2x2(x2 - 1) +1(x2 + 1)
⇒ (x2 - 1)(x4 - 2x2 + 1)
⇒ (x + 1)(x - 1)(x4 - 2x2 + 1)
⇒ (x + 1)(x - 1)(x2 - 1)2
⇒ (x + 1) (x - 1) (x + 1)2 (x - 1)2
⇒ (x + 1)3(x - 1)3 ----(1)
And,
g(x) = x3 + 3x2 + 3x + 1
⇒ x3 + x2 + 2x2 + 2x + x + 1
⇒ x2(x + 1) + 2x(x + 1) + 1(x + 1)
⇒ (x + 1)(x2 + 2x + 1)
⇒ (x + 1) (x + 1)2
⇒ (x + 1)3 ----(2)
Now,
The HCF of f(x) and g(x) is the common factor of equations (1) and (2)
⇒ (x + 1)3
∴ The HCF of the polynomials x6 - 3x4 + 3x2 - 1 and x3 + 3x2 + 3x + 1 is (x + 1)3.