Correct Answer - Option 2 :
\({1\over14}\begin{bmatrix} 2& 3 \\ -4& 1 \end{bmatrix}\)
Concept:
For any matrix A, If matrix A = [aij]
A-1 = \(\rm \text{(adj A)}\over|A|\)
The adj A matrix is the transpose of the matrix [Aij] is the cofactor of the element aij.
Calculation:
A = \(\begin{bmatrix} 1& -3 \\ 4& 2 \end{bmatrix}\) = [aij]
|A| = \(\begin{vmatrix} 1& -3 \\ 4& 2 \end{vmatrix}\)
⇒ |A| = 2 × 1 - (-3) × 4
⇒ |A| = 14
Now, finding cofactor of matrix
a11 = 1, cof(a11) = 2
a12 = -3, cof(a12) = -4
a21 = 4, cof(a21) = 3
a22 = 2, cof(a22) = 1
Cof(A) = \(\begin{bmatrix} 2& -4 \\ 3& 1 \end{bmatrix}\)
adj(A) = [cof(A)]T
adj(A) = \(\begin{bmatrix} 2& 3 \\ -4& 1 \end{bmatrix}\)
A-1 = \(\rm \text{(adj A)}\over|A|\)
⇒ A-1 = \(\boldsymbol{{1\over14}\begin{bmatrix} 2& 3 \\ -4& 1 \end{bmatrix}}\)