Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
76 views
in Probability by (113k points)
closed by
If A and B are two events such that, P(A') = 0.4, P(B) = 0.4 and P(A ∩ B') = 0.5, then find the value \(\rm P(\frac{B}{A \; \cup\; B'})\)  
1. \(\frac37\)
2. \(0\)
3. \(\frac38\)
4. \(\frac17\)

1 Answer

0 votes
by (114k points)
selected by
 
Best answer
Correct Answer - Option 4 : \(\frac17\)

Concept:

\(\rm P(A')=1-P(A)\)

\(\rm P(A\cap B')=P(A)-P(A\cap B)\)

\(\rm P(\frac AB)=\frac{P(A \; \cap \; B)}{P(B)}\)

\(\rm P(A\cup B)=P(A)+P(B)-P(A\cap B)\)

 

Calculation:

Here, P(A') = 0.4, P(B) = 0.4 and P(A ∩ B') = 0.5

\(\rm P(A)=1-P(A')\\=1-0.4\\=0.6\)

\(\rm P(B')=1-P(B)\\=1-0.4\\=0.6\)

Now, \(\rm P(\frac{B}{A\;\cup\; B'})=\frac{P(B\;\cap\;(A\;\cup\; B'))}{P(A\;\cup \;B')}\)                (∵\(\rm P(\frac AB)=\frac{P(A\cap B)}{P(B)}\))

\(\rm =\frac{P(B\;\cap \;A)}{P(A\;\cup \; B')}\)                                                 (∵ \(\rm (A\cup B')= A\))

As we know,  \(\rm P(A\cap B')=P(A)-P(A\cap B)\) and  \(\rm P(A\cup B)=P(A)+P(B)-P(A\cap B)\)

\(\rm =\frac{P(A)-P(A\;\cap\; B')}{P(A)+P(B')-P(A\;\cap\; B')}\)

\(=\rm \frac{0.6-0.5}{0.6+0.6-0.5}\\=\frac{0.1}{0.7}\)

\(=\frac17\)

Hence, option (4) is correct. 

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...