Correct Answer - Option 4 : 4 tan
-1 e
x + C
Concept:
Integral property:
- ∫ xn dx = \(\rm x^{n+1}\over n+1\)+ C ; n ≠ -1
-
\(\rm∫ {1\over x} dx = \ln x\) + C
- \(\rm∫ {1\over 1+x^2} dx = \tan^{-1} x +C\)
Calculation:
I = \(\rm 4\int {dx\over e^x + e^{-x}}\)
I = \(\rm 4\int {dx\over e^x + {1\over e^x}}\)
I = \(\rm 4\int {e^x\over (e^x)^2 + 1}dx\)
Let ex = t ⇒ ex dx = dt
I = \(\rm 4\int {dt\over t^2+ 1}\)
I = 4 tan-1 t + C
Putting the value of t = ex
I = 4 tan-1 (ex) + C