Correct Answer - Option 3 : 18
Given:
5 × 10 × 15 × 20 × …x 100
Concept Used:
Number of zeros = Number of pairs of 2 × 5
n! = n(n – 1)(n – 2)…1
Maximum power of 5 in n! = n/5 + n/52 + n/53 +... (Consider integer values only)
Maximum power of 2 in n! = n/2 + n/22 + n/23 +... (Consider integer values only)
Calculation:
Number of 5 in 5, 10 … 100 = 100/5 = 20 (Consider integer values only)
The given expression 5 × 10 × 15 × 20 × … × 100
⇒ 520(1 × 2 × 3 × 4 × … × 20)
⇒ 520 × 20!
Power of 5 in 20! = 20/5 = 4
Power of 2 in 20! = 20/2 + 20/22 + 20/23 + 20/24 = 10 + 5 + 2 + 1 = 18
In the given expression 520 × 20! maximum power of 5 is 24 and maximum power of 2 is 18. So, there are 18 pairs of 2 × 5.
∴ The number of zeros is 18.