Correct Answer - Option 2 :
\(\frac{{2\left( {b + c} \right)}}{{a - b - c}}\)
Concept:
Formula of Logarithm:
\({a^b} = x\; \Leftrightarrow lo{g_a}x = b\), here a ≠ 1 and a > 0 and x be any number.
Properties of Logarithms:
- \({\log _a}a = 1\)
- \({\log _a}\left( {x.y} \right) = {\log _a}x + {\log _a}y\)
- \({\log _a}\left( {\frac{x}{y}} \right) = {\log _a}x - {\log _a}y\)
- \({\log _a}\left( {\frac{1}{x}} \right) = - {\log _a}x\)
- \({\rm{lo}}{{\rm{g}}_a}{x^p} = p{\rm{lo}}{{\rm{g}}_a}x\)
- \(lo{g_a}\left( x \right) = \frac{{lo{g_b}\left( x \right)}}{{lo{g_b}\left( a \right)}}\)
Calculation:
Given: \(a = log5,\;b = log2,\;c = log\;3\)
5x = 6x + 2 (Given)
Taking log on both sides we have,
\(log\;{5^x} = log\;{6^{x + 2}}\)
Using the power rule this can be written as,
\(\begin{array}{l} xlog\;5 = \left( {x + 2} \right)log6\\ xlog\;5 = \left( {x + 2} \right){\rm{log}}\left( {2 \cdot 3} \right) \end{array}\)
Applying the product rule of logarithm,
\(xlog\;5 = \left( {x + 2} \right)\left( {\log 2 + \log 3} \right)\)
By substituting \(a = log5,\;b = log2,\;c = log\;3\) in the above equation we get,
⇒ a × x = (x + 2)(b + c)
⇒ a × x = (bx + 2b + cx + 2c)
⇒ ax – bx – cx - 2(b + c) = 0
⇒ x(a – b - c) - 2(b + c) = 0
⇒ x = (2(b + c)) / (a – b - c)