Correct Answer - Option 1 :
\(\frac{\sqrt{3}}{2}\)
Concept:
Ellipse:
Equation
|
\(\rm \frac{x^{2}}{a^2}+\frac{y^{2}}{b^2}=1\) (a > b)
|
\(\rm \frac{x^{2}}{b^2}+\frac{y^{2}}{a^2}=1\) (a > b)
|
Equation of Major axis
|
y = 0
|
x = 0
|
Equation of Minor axis
|
x = 0
|
y = 0
|
Length of Major axis
|
2a
|
2a
|
Length of Minor axis
|
2b
|
2b
|
Vertices
|
(± a, 0)
|
(0, ± a)
|
Focus
|
(± ae, 0)
|
(0, ± ae)
|
Directrix
|
x = ± a/e
|
y = ± a/e
|
Centre
|
(0, 0)
|
(0, 0)
|
Eccentricity
|
\(\sqrt{1-\frac {b^2}{a^{2}}}\)
|
\(\sqrt{1-\frac {b^2}{a^{2}}}\)
|
Length of Latus rectum
|
\(\rm \frac{2b^{2}}{a}\)
|
\(\rm \frac{2b^{2}}{a}\)
|
Focal distance of the point (x, y)
|
a ± ex
|
a ± ey
|
Calculation:
Given: \(\rm \frac{x^{2}}{64}+\frac{y^{2}}{16}=1\)
It can be written in standard form as, \(\rm \frac{x^{2}}{8^{2}}+\frac{y^{2}}{4^{2}}=1\)
On comparing with the general equation of the ellipse, \(\rm \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\) where a > b
⇒ a = 8 and b = 4
As we know that, the eccentricity of the ellipse \(\rm \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\) where a > b is \(\sqrt{1-\frac {b^2}{a^{2}}}\)
\(\rm ⇒ \sqrt{1-\frac {b^2}{a^{2}}}= \sqrt{1-\frac {4^2}{8^{2}}}=\sqrt{1-\frac {1}{4}}=\frac{\sqrt{3}}{2}\)
Hence, the correct option is 1.