Correct Answer - Option 2 : 1
Concept:
For a function say f, \(\mathop {\lim }\limits_{x \to a} f(x)\) exists
\( ⇒ \mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = \;\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = l = \;\mathop {\lim }\limits_{x \to a} f(x)\), where l is a finite value.
Any function say f is said to be continuous at point say a if and only if \(\mathop {\lim }\limits_{x \to a} f(x) = l = f\left( a \right)\), where l is a finite value.
Calculation:
Given: \(\rm f(x)=\left\{\begin{matrix} \frac{ksin(π -x)}{π -x} & if & x \neq π \\ 1 & if & x =π \end{matrix}\right.\) is continuous at x = π.
As we know that, if a function f is continuous at point say a then \(\mathop {\lim }\limits_{x \to a} f(x) = l = f\left( a \right)\)
\(\Rightarrow \rm \lim_{x\rightarrow π}\frac{ksin(π-x)}{π-x} = f(π) = 1\)
∵ \(\rm \lim_{x\rightarrow π}\frac{ksin(π-x)}{π-x} = \frac{0}{0}\), we can use L'Hospitals rule.
⇒ \(\rm \lim_{x\rightarrow π}\frac{-kcos(π-x)}{-1} = 1\)
⇒ \(\rm \frac{kcos(π-π)}{1} = 1\)
⇒ k cos(0) = 1
⇒ k = 1.
Hence, option 2 is correct.