Correct Answer - Option 4 : a
2σ
2
Concept:
Variance of a series = (Standard deviation)2
Standard deviation = \(\rm \sqrt{\sum_{1}^{n}(x_i - \overline x)^2\over n}\)
Where xi is the element of the series and \(\rm \overline x\) is the mean of the series having total n elements
Calculation:
Given Standard deviation of series x1, x2, x3 ....... , xn is σ
\(\rm {1\over n}\sqrt{\sum_{1}^{n}(x_i - \overline x)^2}\) = σ
Where \(\rm \overline x\) = \(\rm x_1 + x_2 + x_3 ....... + x_n\over n\)
Variance of this series = \(\rm {1\over n}\sum_{1}^{n}(x_i - \overline x)^2\) = σ2
Now for the series ax1, ax2, ax3 ....... , axn
Mean = \(\rm a\left(x_1 + x_2 + x_3 ....... + x_n\over n\right)\) = a\(\rm \overline x\)
Variance = \(\rm {1\over n}\sum_{1}^{n}(ax_i - a\overline x)^2\)
V = \(\rm {a^2\over n}\sum_{1}^{n}(x_i - \overline x)^2\)
V = a2 ×\(\rm \left[{1\over n}\sum_{1}^{n}(x_i - \overline x)^2\right]\)
V = a2σ2