Correct Answer - Option 3 :
\(\frac{2}{\sqrt2-1}\,m/s\)
CONCEPT:
Kinetic energy
- The energy possessed by a body due to the virtue of its motion is called kinetic energy.
\(⇒ KE=\frac{1}{2}mv^{2}\)
Where KE = kinetic energy, m = mass and v = velocity
CALCULATION:
Given mM = m, mB = \(\frac{m}{2}\), KEM1 = \(\frac{KE}{2}\), and KEM2 = KEB = KE
- The kinetic energy of the boy is given as,
\(⇒ KE_B=\frac{1}{2}m_Bv_B^{2}\)
\(⇒ KE=\frac{1}{2}\times\frac{m}{2}v_B^{2}\)
\(⇒ KE=\frac{1}{4}mv_B^{2}\) ----(1)
- The initial kinetic energy of the man is given as,
\(⇒ KE_{M1}=\frac{1}{2}m_Mv_{M1}^{2}\)
\(⇒ \frac{KE}{2}=\frac{1}{2}mv_{M1}^{2}\)
\(⇒ KE=mv_{M1}^{2}\) ----(2)
- The final velocity of the man is given as,
⇒ vM2 = VM1 + 2
- The final kinetic energy of the man is given as,
\(⇒ KE_{M2}=\frac{1}{2}m_Mv_{M2}^{2}\)
\(⇒ KE=\frac{1}{2}m(v_{M1}+2)^{2}\) ----(3)
By equation 1 and equation 2,
\(⇒ mv_{M1}^{2}=\frac{1}{4}mv_B^{2}\)
\(⇒ v_{M1}^{2}=\frac{1}{4}v_B^{2}\) ----(4)
By equation 1 and equation 3,
\(⇒ \frac{1}{2}m(v_{M1}+2)^{2}=\frac{1}{4}mv_B^{2}\)
\(⇒ (v_{M1}+2)^{2}=\frac{1}{2}v_B^{2}\) ----(5)
By equation 4 and equation 5,
\(⇒ (v_{M1}+2)^{2}=2v_{M1}^{2}\)
\(⇒ v_{M1}=\frac{2}{\sqrt2-1}\,m/s\)
- Hence, option 3 is correct.