Calculation:
x and y are positive real numbers satisfying x + y = 102.
We know, Arithmetic Mean = (x + y)/2
Geometric Mean = √xy
Harmonic Mean = \(\frac{2}{{\frac{1}{x} + \frac{1}{y}}}\)
Then, we know AM ≥ GM ≥ HM
⇒ (x + y)/2 ≥ √xy ≥ \(\frac{2}{{\frac{1}{x} + \frac{1}{y}}}\)
By (i) and (ii) term
⇒ (x + y)/2 ≥ √xy
⇒ 102/2 ≥ √xy
⇒ (51)2 ≥ xy
⇒ 1/xy ≥ 1/2601
By (i) and (iii) term
⇒ (x + y)/2 ≥ \(\frac{2}{{\frac{1}{x} + \frac{1}{y}}}\)
⇒ \(\frac{1}{x} + \frac{1}{y}\; \ge \frac{2}{{51}}\)
We have, \(2601\left( {1 + \frac{1}{x}} \right)\left( {1 + \frac{1}{y}} \right)\)
⇒ \(2601\;\left( {\;1 + \frac{1}{x} + \frac{1}{y} + \frac{1}{{xy}}} \right)\)
⇒ 2601 × (1 + 2/51 + 1/2601)
⇒ 2704
∴ The minimum possible value of \(2601\left( {1 + \frac{1}{x}} \right)\left( {1 + \frac{1}{y}} \right)\) is 2704.