Correct Answer - Option 2 : Symmetric
Concept:
Properties of relation:
Let R be a relation on Z, and let x, y, z ∈ Z.
- Reflexive
|
xRx
|
- Symmetric
|
xRy implies yRx
|
- Transitive
|
xRy and yRz implies xRz
|
Let (a, b) ∈ R
Then (a, b) ∈ R ⇒ (b, a) ∈ R-1
(b, a) ∈ R [Because R = R-1]
(a, b) ∈ R ⇒ (b, a) ∈ R, for all (a, b) ∈ A
aRb ⇒ bRa
∴ R is symmetric