Calculation:
\({\left( {x + \frac{1}{x}} \right)^2} - 3\left( {x + \frac{1}{x}} \right) + 2 = 0\)
⇒ \({\left( {x + \frac{1}{x}} \right)^2} - 2\left( {x + \frac{1}{x}} \right) - \left( {x + \frac{1}{x}} \right) + 2 = 0\)
⇒ \({\left( {x + \frac{1}{x}} \right)} \left( {x + \frac{1}{x}} - 2 \right) -1 \left( {x + \frac{1}{x}} -2\right) = 0\)
⇒ \({\left( {x + \frac{1}{x}} - 1 \right)} \left( {x + \frac{1}{x}} - 2 \right) = 0\)
⇒ \({\left( {x + \frac{1}{x}} - 1 \right)} = 0\ and \ \left( {x + \frac{1}{x}} - 2 \right) = 0\)
Let's solve \({\left( {x + \frac{1}{x}} - 1 \right)} = 0\)
⇒ x2 + 1 - x = 0
⇒ x2 - x +1 = 0
Roots of the equation
⇒ D = b2 - 4ac
⇒ D = (-1)2 - 4 × 1 × 1
⇒ D = -3
So, roots are Imagenary,
Now lets solve \( \ \left( {x + \frac{1}{x}} - 2 \right) = 0\)
⇒ x2 + 1 - 2x = 0
⇒ x2 - 2x + 1 = 0
Roots of the equations
⇒ D = b2 - 4ac
⇒ D = (-2)2 - 4 × 1 × 1
⇒ D = 0
So, roots are Real and Equal
⇒ x2 - 2x + 1 = 0
⇒ (x - 1)2 = 0
⇒ x = 1
∴ The distinct roos of the equation is 1.