Correct Answer - Option 3 : cos
-1 \(\rm 4\over17\)
Concept:
The angle between the planes is the same as the angle between their respective normals.
The angle between any two planes ai + bj + ck = 0 and pi + qj + rk = 0 is:
cos θ = \(\rm \left|ap+bq+cr\over \sqrt{a^2+b^2+c^2}\times\sqrt{p^2+q^2+r^2}\right|\)
Calculation:
Plane A = 2i + 3j + 2k + 1
Normal to plane A nA = 2i + 3j + 2k
Plane B = -2i - 2j + 3k - 2
Normal to plane B nB = -2i - 2j + 3k
Now let the angle between the planes be θ
∴ cos θ = \(\rm \left|2\times(-2)+3\times(-2)+2\times3\over \sqrt{2^2+3^2+2^2}\times\sqrt{(-2)^2+(-2)^2+3^2}\right|\)
cos θ = \(\rm \left|-4\over \sqrt{17}\times\sqrt{17}\right|\)
cos θ = \(\rm 4\over17\)
θ = cos-1\(\boldsymbol{\rm \left(4\over 17\right)}\)