Correct Answer - Option 1 : k = 0
Calculation:
a2 + b2 = 25 ----(1)
x2 + y2 = 169 ----(2)
ax + by = 65 ----(3)
k = ay - bx ----(4)
Multiplying by equation (1) and equation (2):
(a2 + b2)(x2 + y2) = 169 × 25
⇒ (a2 + b2)(x2 + y2) = 6225
⇒ (a2x2 + a2y2 + b2x2 + b2y2 )= 652
By equation (3), we have ax + by = 65
⇒ (a2x2 + a2y2 + b2x2 + b2y2 )= (ax + by)2
⇒ (a2x2 + a2y2 + b2x2 + b2y2 )= a2x2 + b2y2 + 2axby
⇒ (a2y2 + b2x2 – 2axby) = 0
⇒ (ay - bx)2 = 0
⇒ (ay - bx) = 0
By equation (4), we have (ay - bx) = k
⇒ k = 0
∴ The value of k is 0.