Correct Answer - Option 4 : ABC + ABC' + AB'C
Concept:
Important Axioms and De Morgan's laws of Boolean Algebra:
- Double inversion \(\overline{\overline A} = A\)
- A . A = A
- A . \(\overline A \) = 0
- A + 1 = 1
- A + A = A
- A + \(\overline A \) = 1
De Morgan's laws:
Law 1: \(\overline {{\bf{A}} + {\bf{B}}} = \overline{A}\;.\overline B\)
Law 2: \(\overline {{\bf{A}}\;.{\bf{B}}} = \overline A +\overline B\)
Calculation:
Let the given function be Y
Y = AB + AC
Now expanding by using the important properties of boolean algebra:
Y = AB(C + C̅) + AC(B + B̅)
Y = ABC + ABC̅ + ACB + ACB̅
As ABC + ACB = ABC
Y = ABC + ABC̅ + ACB̅
Y can also be written as:
Y = ABC + ABC' + AB'C
Hence option (4) is the correct answer.
Name
|
AND Form
|
OR Form
|
Identity law
|
1.A=A
|
0+A=A
|
Null Law
|
0.A=0
|
1+A=1
|
Idempotent Law
|
A.A=A
|
A+A=A
|
Inverse Law
|
AA’=0
|
A+A’=1
|
Commutative Law
|
AB=BA
|
A+B=B+A
|
Associative Law
|
(AB)C
|
(A+B)+C = A+(B+C)
|
Distributive Law
|
A+BC=(A+B)(A+C)
|
A(B+C)=AB+AC
|
Absorption Law
|
A(A+B)=A
|
A+AB=A
|
De Morgan’s Law
|
(AB)’=A’+B’
|
(A+B)’=A’B’
|