Correct Answer - Option 2 : Purely real
Calculation:
Here, \(\rm \frac{1+ix}{1-ix}=\frac{(a-ib)}{1}\)
Now, using componendo and dividendo property
\(\Rightarrow \rm \frac{1+ix+1-ix}{1+ix-1+ix}=\frac{(a-ib+1)}{a-ib-1}\)
\(\Rightarrow \rm \frac{2}{2ix}=\frac{a-ib+1}{a-ib-1}\)
\(\Rightarrow \rm ix=\frac{(a-1)-ib}{(a+1)-ib}\)
\(\Rightarrow \rm ix=\frac{(a-1)-ib}{(a+1)-ib}\times \frac{(a-1)+ib}{(a+1)+ib}\)
\(\Rightarrow \rm ix=\frac{(a^2-1+b^2)+[(a-1)b-(a+1)b]i}{(a+1)^2+b^2}\)
\(\Rightarrow \rm ix=\frac{0-2bi}{(a+1)^2+b^2}=\frac{-2bi}{(a+1)^2+b^2}\) ...(∵a2 + b2 =1)
\(\Rightarrow \rm x=\frac{-2b}{(a+1)^2+b^2}\)
So, the value of x in the given equation is purely real.
Hence, option (2) is correct.