Correct Answer - Option 2 : 1/4
Given:
2cotθ = 3
Formula used:
Sinθ = P/H
Cosθ = B/H
Tanθ = P/B
Cotθ = B/P
H2 = P2 + B2
where P = Perpendicular
B = Base
H = Height
Calculation:
2cotθ = 3
⇒ cotθ = 3/2
on comparing with (Cotθ = B/P), we get
⇒ B = 3
⇒ P = 2
According to Pythagorean theorem
⇒ H2 = P2 + B2
⇒ H2 = 22 + 32
⇒ H = √13
⇒ Sinθ = 2/√13
⇒ Cosθ = 3/√13
⇒ Tanθ = 2/3
Putting all the above values in equation \(\frac{{\sqrt {13} \cos \theta - 3\tan \theta }}{{3\tan \theta + \sqrt {13} \sin \theta }}\)
⇒ \(\frac{{\sqrt {13} (3/\sqrt13) - 3(2/3) }}{{3(2/3) + \sqrt {13} (2/ \sqrt {13}) }}\)
⇒ (3 - 2)/(2 + 2) = 1/4
∴ The value of \(\frac{{\sqrt {13} \cos \theta - 3\tan \theta }}{{3\tan \theta + \sqrt {13} \sin \theta }}\)is 1/4.