Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
135 views
in Differential Equations by (239k points)
closed by

The degree of the differential equation

\(\dfrac{d^2y}{dx^2}+3\left(\dfrac{dy}{dx}\right)^2 =x^2 \log \left(\dfrac{d^2y}{dx^2}\right)\)


1. 1
2. 2
3. 3
4. Not defined

1 Answer

0 votes
by (240k points)
selected by
 
Best answer
Correct Answer - Option 4 : Not defined

Concept:

Order: The order of a differential equation is the order of the highest derivative appearing in it.

Degree: The degree of a differential equation is the power of the highest derivative occurring in it, after the Equation has been expressed in a form free from radicals as far as the derivatives are concerned.

Calculation:

\(\dfrac{d^2y}{dx^2}+3\left(\dfrac{dy}{dx}\right)^2 =x^2 \log \left(\dfrac{d^2y}{dx^2}\right)\)

For the given differential equation the highest order derivative is 2.

The given differential equation is not a polynomial equation because it involved a logarithmic term in its derivatives hence its degree is not defined.

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...