Correct Answer - Option 2 :
\(div \ \vec{B}=-\mu_0 \vec{J}\)
The correct Maxwell's equation is:
∇ . B = 0
Hence, option 2 is correct.
Maxwell's Equations for time-varying fields is as shown:
S. No.
|
Differential form
|
Integral form
|
Name
|
1.
|
\(\nabla \times E = - \frac{{\partial B}}{{\partial t}}\)
|
\(\mathop \oint \nolimits_L^{} E.dl = - \frac{\partial }{{\partial t}}\mathop \smallint \nolimits_S^{} B.d S\)
|
Faraday’s law of electromagnetic induction
|
2.
|
\(\nabla \times H =J+ \frac{{\partial D}}{{\partial t}}\)
|
\(\mathop \oint \nolimits_L^{} H.dl = \mathop \smallint \nolimits_S^{} (J+\frac{{\partial D}}{{\partial t}}).dS\)
|
Ampere’s circuital law
|
3.
|
∇ . D = ρv
|
\(\mathop \oint \nolimits_S^{} D.dS = \mathop \smallint \nolimits_v^{} \rho_v.dV\)
|
Gauss’ law
|
4.
|
∇ . B = 0
|
\(\mathop \oint \nolimits_S^{} B.dS = 0\)
|
Gauss’ law of Magnetostatics (non-existence of magnetic monopole)
|