Correct Answer - Option 3 :
\(\dfrac{\pi}{30}\) cubic units
Concept:
The volume of the solid formed by revolving the region bounded by the curve y=f(x) and the x-axis between x=a and x=b about the x−axis is given by
\(\rm V =\pi\; \int_{a}^{b}y^2dx\)
Calculation:
Given:
The curve is y = (x - x2)
\(\rm V =\pi\; \int_{a}^{b}y^2dx\)
\(\rm V = \pi\;\int_{0}^{1}(x-x^2)^2dx\)
\(\rm V = \pi\;\int_{0}^{1}(x^2+x^4-2x^3)dx\)
\(\rm V = \pi[\frac{x^3}{3}+\frac{x^5}{5}-\frac{2x^4}{4}]_0^1\)
\(\rm V = \pi(\frac{(1)^3}{3}+\frac{(1)^5}{5}-\frac{2(1)^4}{4})\)
\(\rm V = \pi(\frac{1}{3}+\frac{1}{5}-\frac{1}{2})\)
\(\rm V = \pi(\frac{10+6-15}{30})\)
\(V=\frac{\pi}{30}\ unit^3\)
Hence the volume of the solid will be \(\frac{\pi}{30}\) cubic unit.