Use app×
Join Bloom Tuition
One on One Online Tuition
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
143 views
in Calculus by (240k points)
closed by
Find \(\rm \frac{dy}{dx}\), if y = \(\rm \tan^{-1}\left[ \frac{8x}{1-15x^2} \right ]\)
1. \(\rm \frac{5}{1+25x^2}-\frac{3}{1+9x^2}\)
2. \(\rm \frac{5}{1+25x^2}+\frac{3}{1+9x^2}\)
3. \(\rm \frac{8}{1+25x^2}\)
4. None of these

1 Answer

0 votes
by (239k points)
selected by
 
Best answer
Correct Answer - Option 2 : \(\rm \frac{5}{1+25x^2}+\frac{3}{1+9x^2}\)

Concept:

\(\rm \tan^{-1} x + \tan^{-1} y = \tan^{-1}\left[ \frac{x+y}{1-xy} \right ]\)

\(\rm \frac{d(\tan^{-1} x)}{dx}= \frac{1}{1+x^2}\)

Calculation:

Given: y = \(\rm \tan^{-1}\left[ \frac{8x}{1-15x^2} \right ]\)

\(\rm y=\rm \tan^{-1}\left[ \frac{5x+3x}{1-5x\cdot 3x} \right ]\)

As we know that, \(\rm \tan^{-1} x + \tan^{-1} y = \tan^{-1}\left[ \frac{x+y}{1-xy} \right ]\)

So, \(\rm y=\rm \tan^{-1}\left[ \frac{5x+3x}{1-5x\cdot 3x} \right ]\)= tan-1 5x + tan-1 x

Differentiating with respect to x, we get

\(\rm \frac{dy}{dx}=\frac{d(\tan^{-1} 5x)}{dx}+\frac{d(\tan^{-1} 3x)}{dx}\)

\(= \rm \frac{5}{1+(5x)^2}+\frac{3}{1+(3x)^2}\)

\(=\rm \frac{5}{1+25x^2}+\frac{3}{1+9x^2}\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...